Finite groups admitting a connected cubic integral bi-Cayley graph
نویسندگان
چکیده
منابع مشابه
A Classification of Finite Groups with Integral Bi-cayley Graphs
The bi-Cayley graph of a finite group G with respect to a subset S ⊆ G, which is denoted by BCay(G,S), is the graph with vertex set G× {1, 2} and edge set {{(x, 1), (sx, 2)} | x ∈ G, s ∈ S}. A finite group G is called a bi-Cayley integral group if for any subset S of G, BCay(G,S) is a graph with integer eigenvalues. In this paper we prove that a finite group G is a bi-Cayley integral group if a...
متن کامل5-Arc transitive cubic Cayley graphs on finite simple groups
In this paper, we determine all connected 5-arc transitive cubic Cayley graphs on the alternating group A47; there are only two such graphs (up to isomorphism). By earlier work of the authors, these are the only two nonnormal connected cubic arc-transitive Cayley graphs for finite nonbelian simple groups, and so this paper completes the classification of such non-normal Cayley graphs.
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملIntegral Sets and Cayley Graphs of Finite Groups
Integral sets of finite groups are discussed and related to the integral Cayley graphs. The Boolean algebra of integral sets are determined for dihedral group and finite abelian groups. We characterize the finite abelian groups as those finite groups where the Boolean algebra generated by integral sets equals the Boolean algebra generated by its subgroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic structures and their applications
سال: 2018
ISSN: 2382-9761,2423-3447
DOI: 10.29252/asta.5.2.35